| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 
 | import numpy as npimport random
 import heapq
 import time
 
 
 def Embedding(C,line):
 
 string = []
 for element in line:
 for i in range(element):
 string.append("1")
 for j in range(C-element):
 string.append("0")
 return  string
 
 
 def set_table(H,C,B,data):
 
 
 table = {}
 f = {}
 for i, line in enumerate(data):
 pi = []
 
 var = ''.join(Embedding(C,line))
 
 for j in H:
 pi.append(var[j])
 
 if (''.join(pi)) in f:
 if f[''.join(pi)]<B:
 f[''.join(pi)] += 1
 table[i] = ''.join(pi)
 else:
 f[''.join(pi)]=1
 table[i] = ''.join(pi)
 return table
 
 
 def set_H(Cn,k):
 H = []
 for i in range(k):
 H.append(random.randint(0,Cn-1))
 H.sort()
 return H
 
 
 def search(Hlist,tblist,var):
 
 
 keys = []
 
 for i,h in enumerate(Hlist):
 p = []
 for hi in h:
 p.append(var[hi])
 
 for key, value in tblist[i].items():
 if value== ''.join(p):
 keys.append(key)
 return keys
 
 
 def LSH(line, Hlist, tblist):
 array = line
 var = ''.join(Embedding(C, array))
 
 keys = search(Hlist, tblist, var)
 keys.sort()
 
 set1 = set(keys)
 dict01 = {item: keys.count(item) for item in set1}
 sorted_x = sorted(dict01.items(), key=lambda x: x[1], reverse=True)
 keys = []
 num = 0
 for i,n in sorted_x:
 keys.append(i)
 num += 1
 return keys
 
 
 def distance(line1,line2):
 dist = np.linalg.norm(line1-line2)
 return dist
 
 
 def mindistancedata(linenum,data):
 dist = []
 for i, line in enumerate(data):
 dist.append(distance(data[linenum],data[i]))
 min_index_list = map(dist.index, heapq.nsmallest(10, dist))
 return list(min_index_list)
 
 
 def mindistance(linenum,data,linelist):
 min_index_list = []
 dist = {}
 for i in linelist:
 dist[i] = distance(data[linenum], data[i])
 L = sorted(dist.items(), key=lambda item: item[1])
 for i in range(10):
 min_index_list.append(L[i][0])
 return min_index_list
 
 
 bit = 2
 odata = data = np.loadtxt('ColorHistogram.asc', usecols = range(1, 33), unpack= False)
 data = np.loadtxt('ColorHistogram.asc',usecols = range(1, 33), unpack= False)
 data = data*(10**bit)
 data = data.astype(np.int)
 
 k = input("input K:")
 k = int(k)
 
 L = input("input L:")
 L = int(L)
 
 B = input("input B:")
 B = int(B)
 
 C = int(np.max(data)+1)
 n = data.shape[1]
 hamming_code = []
 Cn = C*n
 Hlist=[]
 tblist = []
 
 
 for i in range(L):
 H = set_H(Cn,k)
 Hlist.append(H)
 tblist.append(set_table(H,C,B,data))
 print("创建索引哈希表: "+str(i))
 
 
 while(True):
 true = []
 my = []
 linenum = 1000
 
 
 for i in range(linenum):
 trueindex = []
 trueindex = mindistancedata(i, odata)
 true.append(trueindex)
 time_start = time.time()
 tinm = 0
 mint = 0
 
 
 for i in range(linenum):
 myindex = []
 line  = data[i]
 keys = LSH(line, Hlist, tblist)
 myindex = mindistance(i,odata,keys)
 for ni in range(10):
 if true[i][ni] in myindex:
 tinm += 1
 time_end = time.time()
 
 print("K=" + str(k) +",L=" + str(L) + "B=" + str(B))
 print("召回率"+str(tinm/linenum/10))
 print("准确率"+str(1-(linenum*10-tinm)*2/linenum/68040))
 print('time cost', time_end - time_start, 's')
 
 |